Lógica Computacional

Demonstrações Formais

Dedução Natural

Introdução e Eliminação da Negação

Introdução e Eliminação da Contradição

Negação e Contradição

- Antes de apresentarmos as regras da negação no sistema de dedução natural, relembramos que no raciocínio por absurdo se pretende atingir uma contradição a partir de uma hipótese que pretendemos provar como sendo falsa.
- Geralmente a contradição é atingida quando na mesma demonstração se tem uma fórmula φ a sua "oposta", ¬φ.
- Em princípio, esta verificação seria suficiente. No entanto para tornar mais simples o sistema e separar a obtenção da contradição da negação da hipótese, introduz-se um novo símbolo proposicional, ⊥, de contradição (ou *bottom*) que como o nome indica é falso em qualquer interpretação que se considere para os símbolos proposicionais utilizados.
- Tal como para o predicado de igualdade, e ainda para os operadores Booleanos de conjunção e de disjunção, o sistema de Dedução Natural define regras de introdução e de eliminação da contradição.

Introdução da Contradição

- No sistema de **Dedução Natural**, a contradição é introduzida após a detecção de uma fórmula e da sua negação, como referido atrás.

Introdução da ⊥

- Estamos agora em condições de apresentar as regras da negação, deixando a regra de eliminação da contradição para mais tarde.

Eliminação da Negação

- A regra de eliminação da negação corresponde à conhecida equivalência entre uma fórmula e e sua dupla negação, e é definida da seguinte forma.

Eliminação da ¬

- Sendo φ e $\neg\neg\varphi$ fórmulas equivalentes, poder-se-ia ser tentado a considerar como regra de introdução da negação a inferência de $\neg\neg\varphi$ a partir da fórmula φ .
- No entanto esta regra não introduziria o raciocínio por absurdo como um novo método de introdução da negação. Como veremos, ele torna redundante a existência de uma regra de inferência da fórmula ¬¬φ a partir da fórmula φ.

Introdução da Negação

- A introdução da negação corresponde pois ao raciocínio por absurdo, que como vimos pretende inferir uma contradição a partir de uma fórmula "duvidosa", demonstrando-se assim a negação dessa fórmula. Esquematicamente,

Introdução da ¬

Tal como na disjunção, a introdução da negação assume uma hipótese φ que não necessita de ser justificada. De facto ela não poderia ser justificada com base nas anteriores pois pretende-se provar exactamente que ela é falsa!

Introdução da Negação

- Com esta regra de introdução pode facilmente obter-se a pseudo-regra de introdução que tínhamos referido, para se inferir $\neg \neg \varphi$ a partir da fórmula φ .
- Essa demonstração pode ser feita como indicado de seguida:

- Estamos agora em condições de apresentar a regra de eliminação da contradição.

Eliminação da Contradição

- Como já analisamos na análise da argumentação, uma conclusão era válida se todas as interpretações que tornassem verdadeiras as premissas tornassem verdadeira a conclusão.
- Um caso especial ocorre quando as premissas são sempre falsas, isto é, quando não é
 possivel valorar (com V ou F) as fórmulas atómicas que aparecem nas premissas de
 forma a torná-las todas verdadeiras.
- Neste caso, assumimos que a argumentação era válida, embora obviamente não fosse sólida.
- Naturalmente tal não indica que uma fórmula seja verdadeira, mas apenas que num contexto em que existe uma contradição qualquer fórmula pode ser deduzida!
- Assim sendo, e porque se pretende que o sistema de dedução seja completo, as suas regras de inferência deverão permitir demonstrar as conclusões obtidas com argumentos válidos, o que justifica a regra de eliminação da contradição.

Eliminação da Contradição

- Esta regra de eliminação corresponde à situação descrita atrás de que a partir de premissas falsas a fórmula φ pode ser demonstrada, qualquer que ela seja!

Eliminação da ⊥

- Tal como a introdução, também a regra de eliminação da ⊥ é redundante, sendo no entanto mantida no sistema para o tornar mais "simples". Com efeito, as regras de negação seriam suficientes para se atingir o mesmo efeito.

Leis de de Morgan - Negação da Conjunção

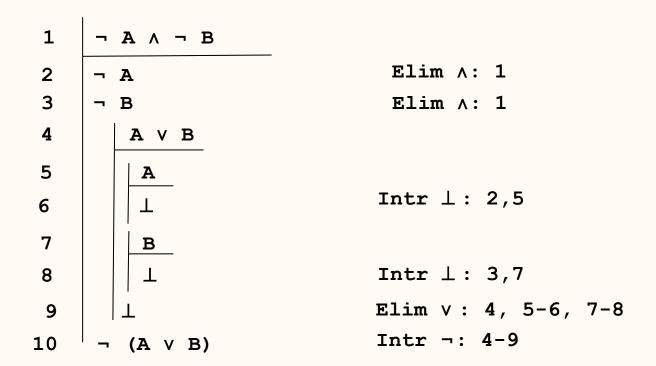
 Uma vez definidas as regras da negação e da contradição que lhe estão associadas, podemos verificar que elas são suficientes, em conjunto com as da conjunção e da disjunção, para demonstrar as leis de de Morgan.

$$\neg (A \lor B) \mid = \neg A \land \neg B$$

1	¬(A v B)	
2	A	
3	A v B	<pre>Intr v: 2</pre>
4		Intr ⊥: 1,3
5	¬ A	Intr ¬: 2-4
6	В	
7	AVB	<pre>Intr v: 6</pre>
8		Intr ⊥: 1,7
9	¬ B	Intr ¬: 6-8
10	¬ A ∧ ¬ B	Intr Λ: 5,9

Leis de de Morgan - Negação da Conjunção

$$\neg A \land \neg B \mid = \neg (A \lor B)$$



Heuristicas

- Para demonstrar as fórmulas pretendidas há que utilizar algumas estratégias para se obter a sequência adequada de fórmulas que constituem a demonstração. Para esse efeito há que ter em conta algumas "regras" já seguidas atrás
- 1. Entender bem o que se pretende demonstrar
 - A partir deste entendimento poder-se-ão ...
- 2. Estabelecer fórmulas intermédias, para "ancorar" a demonstração
 - Muito úteis para conjunções, e não só, como vimos e veremos
- Heurísticas genéricas:
 - i. Conjunções: Se se pretende demonstrar $\phi \wedge \psi$ demonstrar separadamente as fórmulas $\phi \in \psi$;
 - ii. Negações: Se se pretende demonstrar $\neg \varphi$ demonstrar que φ é "absurdo";
 - iii. **Disjunções**: Se se pretende demonstrar $\phi \lor \psi$ tentar demonstrar um deles;
 - iv. Em "desespero": Usar o raciocínio por absurdo.
- Alguns exemplos ilustrarão este processo.

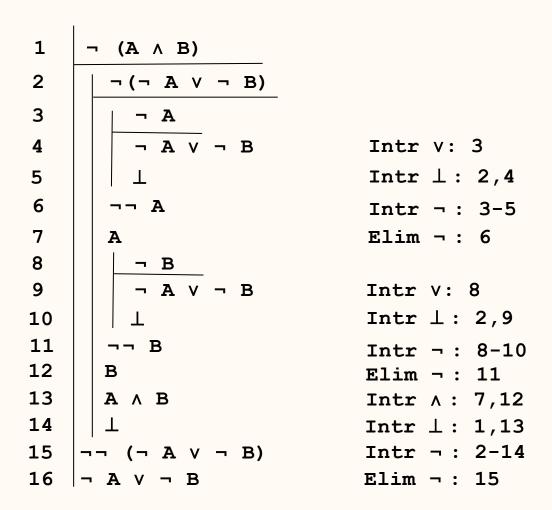
Leis de de Morgan - Negação da Disjunção

$$\neg A \lor \neg B \mid = \neg (A \land B)$$

1	¬ A v ¬ B	
2	AΛB	-
3	¬ A	
4	A	Elim A: 2
5		Intr ⊥: 3,4
6	_¬ B	
7		Elim A: 2
8		Intr ⊥: 6,7
9		Elim v: 1, 3-5, 6-8
10	¬(A ∧ B)	Intr ¬: 2-9

Leis de de Morgan - Negação da Disjunção

$$\neg (A \land B) \mid = \neg A \lor \neg B$$



Tautologias

- Na demonstração de tautologias, por não haver premissas, a única regra aplicável (por agora) do sistema de Dedução Natural é a regra de Introdução da Negação.
- Tal como anteriormente, na demonstração vão-se estabelecendo fórmulas intermédias e descobrindo o encadeamento de regras até as atingir.
- O processo de "construção" da demonstração pode ser ilustrado como se segue para a tautologia A v ¬ A.

